

PROGRESS OF MIDAS AND CHALLENGES

IPWG-11 15-18 July 2024 **Tokyo Institute of Technology** Tokyo, Japan

Kwo-Sen Kuo^{1,2} and Ines Fenni³

1. University of Maryland, College Park, MD 20740, USA

2. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

BACKGROUND AND MOTIVATION

- Single-scattering properties of hydrometeors are fundamental for physical precipitation (and cloud) remote sensing (retrieval).
- ✤ Many solid and melting hydrometeors have *complex and <u>non-convex</u>* shapes.
- The assumption of *simple, convex* shapes causes inconsistency between active (radar) and passive (radiometer) retrievals.
 - \blacktriangleright Olson et al (2016; <u>https://doi.org/10/f8h9qw</u>)
- Generating the complex, non-convex hydrometeors and solving the associated EM scattering problems are computationally costly.
- Melting hydrometeors add the complication of **heterogeneous** composition with high refractive contrast between liquid and solid at lower microwave frequencies (≤ 35 GHz).

MIDAS IN A NUTSHELL

- MIDAS: MoM (Method of Moments) Integral-equation Decomposition for **Arbitrary Scatterers**
- MIDAS can run in one of two modes

HOMOGENEOUS LIQUID SPHERE

Findings:

- 1. The solution error is due mainly to high refractive index, not the contrast between them.
- 2. The $|m|kd \leq 0.5$ criterion is valid for |m| = 1.79, but insufficient for larger

|m|

BACKGROUND AND MOTIVATION

$|m|kd \approx 0.027 (\approx 0.5/20)$

 $It takes ADDA \sim 4$ minutes for each orientation and ~ 46 hours for 703 orientations!

Even with significantly more CBFs, MIDAS has a large edge in time-to-solution!

10 ⁻³	δ_{th}	10⁻⁸
adaptive	Quadrature	spherical design

- full MoM mode: <u>MIDAS-MOM</u>, no approximation
- Characteristic Basis Function Method mode: MIDAS-CBFM, with SVD approximation
- ✤ In the integral-equation formulation, MoM and DDA are equivalent
 - The volume elements, or voxels, in MoM are just like the dipoles in DDA
- They require the same criterion, |m|kd < 0.5, for accurate angular crosssections where m is the refractive index, k the angular wave number, and *d* the dipole distance (voxel size).

MIDAS-MOM

The volume integral equation (VIE)

$$\mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r}) + (k_0^2 + \nabla \nabla \cdot) \int_{\Omega} \chi(\mathbf{r}') G(\mathbf{r}, \mathbf{r}') \mathbf{E}(\mathbf{r}') d\mathbf{r}'$$

$$\Rightarrow \Gamma \mathbf{E}(\mathbf{r}) = \mathbf{E}_0(\mathbf{r})$$

$$\mathbf{\Gamma} = \mathbf{I} + (k_0^2 + \nabla \nabla \cdot) \int_{\Omega} \chi(\mathbf{r}') G(\mathbf{r}, \mathbf{r}') d\mathbf{r}': \text{ operator}$$

 Ω : the spatial domain (grid cells when discretized) occupied by the scatterer $\chi(\mathbf{r}) = (\epsilon(\mathbf{r})/\epsilon_0) - 1$: dielectric contrast between the scatterer and the free space After discretizing the *bounding box* of Ω into a grid system of cubic cells, in which Ω occupies N cells, we arrive at a linear system of size $3N \times 3N$

MIDAS-CBFM

Findings:

- 3. Decreasing d, hence |m|kd, improves accuracies of ADDA and MIDAS-MoM for |m| = 6.26
- 4. Higher resolution does not improve MIDAS-CBFM results.

HOMOGENEOUS "LIQUID AGGREGATE"

RECAP

Findings

We initially suspected it was due to the high contrast between the refractive indices of liquid water and ice.

CONCLUSIONS

Realistic scatterer geometry and composition are paramount for reducing uncertainties in physical particulate-matter retrievals, e.g., aerosol, cloud, and precipitation. ♦ For higher $|m| (\geq 4)$, the accuracy of ADDA and MIDAS-MoM improves when a much finer discretization resolution is used, e.g., $|m|kd \leq 0.1$, but not MIDAS-CBFM ➢ Higher discretization resolutions lead to higher computation

In CBFM mode, MIDAS

- decomposes the container volume into several sub-volumes,
- ✤ formulates each sub-volume as a separate, local MoM problem with a set of incident waves.
- performs singular value decomposition (SVD) on the matrix of each local problem,
- * applies a threshold to the singular values and constructs an approximate matrix by selecting only the components corresponding to those above the threshold.
- \diamond concatenates the local matrices, and

 \clubsuit solves the approximate problem.

			12 5 CII - (IZ)	25 CH- (V-)	
**	Melting hydrometeors have a		13.5 GHZ (KU)	35 GHZ (Ka)	94 GHZ (W)
	heterogeneous composition of	Water	6.26 + i 2.98	4.07+i 2.37	2.94 + i 1

- Comparing to the Mie solution of a liquid sphere shows that It is mainly due to the high refractive index of liquid water
- □ The discretization resolution, *d*, improves ADDA and MOM solutions but not CBFM
- Results from a fictitious "liquid aggregate" indicate that particle shape has little or no impact.
- Since CBFM is an approximation to MOM with many tunable parameters, adjustment to some combination of these parameters may improve the approximation, e.g.,
 - \succ the size (dimensions) of the CBFM blocks,
 - \blacktriangleright the number and type of the incident waves,
 - \blacktriangleright the quadrature used for integration, and
 - \blacktriangleright the threshold applied to the singular value decomposition (SVD).

HOMOGENEOUS LIQUID SPHERE

demands!

- The **SVD threshold used** for selecting CBFs at local blocks plays the most crucial role in improving MIDAS-CBFM accuracy (after resolution refinement)
 - \blacktriangleright The number of incident waves and the degree of quadrature play important supporting roles.
 - ▶ MIDAS-CBFM is still significantly more computationally competitive than DDA.
- ✤ MIDAS characterization effort will continue to address the issue of predetermining the optimal parameter combination.

ACKNOWLEDGEMENT

We are grateful for the support of the NASA Precipitation Measurement Missions (PMM) program for this investigation

MIDAS-CBFM ILLUSTRATION