
v Single-scattering properties of  hydrometeors are fundamental for physical 
precipitation (and cloud) remote sensing (retrieval).

v Many solid and melting hydrometeors have complex and non-convex shapes.
v The assumption of  simple, convex shapes causes inconsistency between 

active (radar) and passive (radiometer) retrievals.
Ø Olson et al (2016; https://doi.org/10/f8h9qw) 

v Generating the complex, non-convex hydrometeors and solving the 
associated EM scattering problems are computationally costly.

v Melting hydrometeors add the complication of  heterogeneous 
composition with high refractive contrast between liquid and solid 
at lower microwave frequencies (≤ 35 GHz).

Background and Motivation

v MIDAS: MoM (Method of  Moments) Integral-equation Decomposition for 
Arbitrary Scatterers

v MIDAS can run in one of  two modes
1. full MoM mode: MIDAS-MOM, no approximation
2. Characteristic Basis Function Method mode: MIDAS-CBFM, with SVD 

approximation

v In the integral-equation formulation, MoM and DDA are equivalent
Ø The volume elements, or voxels, in MoM are just like the dipoles in DDA

v They require the same criterion, |𝑚|𝑘𝑑<0.5, for accurate angular cross-
sections where 𝑚 is the refractive index, 𝑘 the angular wave number, and 
𝑑 the dipole distance (voxel size).

MIDAS in a Nutshell

The volume integral equation (VIE)

𝐄 𝐫 = 𝐄! 𝐫 + 𝑘!" + ∇∇ ⋅ -
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Ω: the spatial domain (grid cells when discretized) occupied by the scatterer 

𝜒 𝐫 = ⁄𝜖 𝐫 𝜖! − 1: dielectric contrast between the scatterer and the free space 
After discretizing the bounding box of  Ω into a grid system of  cubic cells,  in 
which Ω occupies 𝑁 cells, we arrive at a linear system of  size 3𝑁×3𝑁
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MIDAS-MOM

MIDAS-CBFM Illustration

In CBFM mode, MIDAS 
v decomposes the container volume into several sub-volumes,
v formulates each sub-volume as a separate, local MoM problem with a set 

of  incident waves,
v performs singular value decomposition (SVD) on the matrix of  each local 

problem,
v applies a threshold to the singular values and constructs an approximate 

matrix by selecting only the components corresponding to those above 
the threshold,

v concatenates the local matrices, and
v solves the approximate problem.

MIDAS-CBFM

13.5 GHz (Ku) 35 GHz (Ka) 94 GHz (W)

Water 6.26 + i 2.98 4.07+i 2.37 2.94 + i 1.39

Ice 1.79 + i 3.61 10-4 1.79 + i 9.13 10-4 1.79 + i 2.41 10-4

𝑚! / 𝑚" 3.87 2.63 1.82

v Melting hydrometeors have a 
heterogeneous composition of  
ice and liquid water

v Starting around the Ka-band 
|𝑚| > 4 for liquid water, beyond 
the valid range of  DDA

v Even when the DDA criterion, 
|𝑚|𝑘𝑑<0.5, is strictly satisfied, 
we find significant uncertainties 
in 𝑄!, 𝑄", and 𝑄# 

v Large contrast in dielectric 
dipole size, |𝑚$	| ∕ |𝑚%	| 	≳ 2.5, 
at the liquid-solid interfacial 
boundaries

Challenge of Melting Hydrometeors
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Findings:
1. The solution error is due mainly to high refractive index, not the contrast 

between them.
2. The 𝑚 𝑘𝑑 ≲ 0.5 criterion is valid for 𝑚 = 1.79, but insufficient for larger 

𝑚 .

Homogeneous Liquid Sphere Background and Motivation
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Findings:
3. Decreasing 𝑑, hence 𝑚 𝑘𝑑, improves accuracies of  ADDA and MIDAS-

MoM for |m|=6.26 
4. Higher resolution does not improve MIDAS-CBFM results.

𝒎𝒓 = 𝟔. 𝟐𝟔

Homogeneous “Liquid Aggregate”
Comparing MIDAS-CBFM to -MOM (No Mie)

Finding:
5. It is not the shape of  the particle.

𝒎𝒓 = 𝟔. 𝟐𝟔𝒎 = 𝟏. 𝟕𝟗
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v Findings
Ø We initially suspected it was due to the high contrast between the 

refractive indices of  liquid water and ice.
q Comparing to the Mie solution of  a liquid sphere shows that It is mainly due to the 

high refractive index of  liquid water 
q The discretization resolution, 𝑑, improves ADDA and MOM solutions but not 

CBFM

Ø Results from a fictitious “liquid aggregate” indicate that particle shape 
has little or no impact.

v Since CBFM is an approximation to MOM with many tunable 
parameters, adjustment to some combination of  these parameters 
may improve the approximation, e.g.,
Ø the size (dimensions) of  the CBFM blocks,
Ø the number and type of  the incident waves,
Ø the quadrature used for integration, and
Ø the threshold applied to the singular value decomposition (SVD).

Recap

Homogeneous Liquid Sphere

The Role of SVD Threshold
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# CBFs: 85

𝑚 𝑘𝑑 ≅ 0.027 ≈ ⁄0.5 20
vIt takes ADDA ~4 minutes for each orientation and ~46 hours 

for 703 orientations!
vEven with significantly more CBFs, MIDAS has a large edge in 

time-to-solution!
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v Realistic scatterer geometry and composition are paramount 
for reducing uncertainties in physical particulate-matter 
retrievals, e.g., aerosol, cloud, and precipitation.

v For higher |𝑚|(≳ 4), the accuracy of  ADDA and MIDAS-
MoM improves when a much finer discretization resolution is 
used, e.g., |𝑚|𝑘𝑑 ≲ 0.1, but not MIDAS-CBFM
Ø Higher discretization resolutions lead to higher computation 

demands!
v The SVD threshold used for selecting CBFs at local blocks 

plays the most crucial role in improving MIDAS-CBFM 
accuracy (after resolution refinement)
Ø The number of  incident waves and the degree of  quadrature play 

important supporting roles. 
Ø MIDAS-CBFM is still significantly more computationally competitive 

than DDA. 
v MIDAS characterization effort will continue to address the 

issue of  predetermining the optimal parameter combination.

Conclusions
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